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Investigation of the stability characteristics of Hartree-Fock functions leads to conclusions 
of interest in relation to the functions of positive ions. These considerations, in conjunction 
with an existing modified SCF formalism, make it possible to reformulate the SCF method in 
order to adapt it  to the determination of Hartree-Fock functions for positive ions. 

Die Untersuchung der Stabilitatseigenschaften yon Hartree-Foek-Funktionen fiihrt zu 
SchluBfolgerungen, die yon Interesse sind im Zusammcnhang mit Funktionen fiir positive 
Ionen. Diese Betrachtungen, in Verbindung mit einem veranderten SCF-Formalismus, maehen 
es mSglich, die SCF-iViethode umzuformulieren, um sic der Bestimmung yon Hartree-Fock- 
Funktionen fiir positive Ionen anzupassen. 

L'6tude de la stabilit6 des fonctions de Hartree-Fock m~ne ~ des conclusions pr6sentant 
un int6r~t par rapport aux fonetions des ions positifs. Ces consid6rations, li6es s un formalisme 
SCF modifi6, permettent de reformuler la m6thode SCF en l 'adaptant ~ la dSterminantion des 
fonctions de Hartree-Fock des ions positifs. 

Introduction 

FI~AGX [2] and  PRIESTLEY and  FI~AGA [8] have  r epor t ed  the  exis tence of  
cer ta in  numer ica l  charac ter i s t ics  for H a r t r e e - F o c k  funct ions.  The numer ica l  
values  found  for neu t r a l  sys tems  and  nega t ive  ions show a ve ry  in teres t ing  behav-  
ior :  t h e y  are a lmos t  cons tant ,  wi th  osci l lat ions wi th in  a ve ry  smal l  range.  On the  
o ther  h a n d  the  discrepancies  observed  for  posi t ive  ions increase wi th  the  n u m b e r  
of  posi t ive  charges.  

I t  was therefore  considered i m p o r t a n t  to  inves t iga te  the  possible reasons for 
such difference, a r r iv ing  a t  the  conclusion t h a t  pe rhaps  the  funct ions  for posi t ive  
ions should  be de t e rmined  t h rough  a formal i sm different  f rom t h a t  used for neu t ra l  
sys tems  and  nega t ive  ions. 

The  deve lopmen t  of  th is  formal i sm involves  a series of  considerat ions.  F i r s t  of  
all, an  e x a m i n a t i o n  of  the  s t ab i l i t y  condi t ions  for H a r t r e e - F o c k  funct ions  shows 
t h a t  i t  is l eg i t ima te  to  have  o rb i t a l  energies t h a t  are  iden t ica l ly  zero. This  fac t  
opens the  w a y  to  the  new formula t ion ,  where one in t roduces  as cons t ra in ts  the  
condi t ions  t h a t  the  o rb i t a l  energies of  the  ionized electrons will be precisely  zero. 
The  m a t h e m a t i c a l  a p p a r a t u s  m a k e s  use of  t he  fac t  t h a t  the re  is no need  of  in t ro-  
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ducing the orthonormality constraints in the variational treatment,  as shown by 
FRAGA and M~ LI  [6], being able to use instead any other constraint, following the 
formulation of FgAGA and Brass [5]. 

General Theory 

The Stability Conditions o/Hartree-Foclc Functions 
In order to deal with a simpler mathematical formulation, an electronic 

system with a closed-shell configuration will be considered here. The corresponding 
electronic Hamiltonian is 

Q Q < v  

where the summations extend over all the electrons in the system. He represents 
the one-electron part  of the Hamiltonian, and contains the kinetic and nuclear 
attraction terms; the term (i/re~) represents the electronic repulsion between 
electrons ~ and 3. The (normalized) total electronic function is given, within the 
independent-particle approximation, by a single Slater determinant. 

The total electronic energy can be written*, for orthonormal orbitals, as 

E = e 5 H~ + 5 5 I~j, (2) 
i i i 

where the summations extend over all the occupied orbitals in the system. The 
integrals in this expression are defined by  the relations 

g u  = (r I H [ r (3a) 

I~t = (r ] I1 ] r = (r [/~ Ir  = / J ~ ,  (35) 

where r represents any of the orbitals for the system under consideration; the 
subindiees i, ] . . . .  label the occupied orbitals, and the subindices m, n . . . .  
correspond to unoccupied orbitals. I t represents a two-electron operator, made 
up of coulomb and exchange operators, J l  and Kf, respectively. 

The best orbitals, under an energy criterion, arc determined by application of 
a variational treatment,  in which one investigates the behavior of the energy 
variations corresponding to infinitesimal variations of the orbitals. I t  is customary, 
in such treatments, to impose the subsidiary condition that  the varied orbitals 
remain orthonormalized. 

Two facts must be pointed out in this connection. First of all it must be men- 
tioned that,  as proved by F~AcA and M~LLI [6], there is no need whatsoever of 
introducing these subsidiary conditions in order to obtain the usual SCF equations 
(see below) for orthonormal orbitals. On the other hand, it must be emphasized 
that  the orbitals can be varied one at a time, while insuring that  they remain 
orthogonal to all the remaining occupied orbitals, and properly normalized. 

In order to attain such a condition, as indicated by THOULESS [11], it is required 
that  the varied orbital be expressed as 

r = r + ~ r  (4) 

where co is an arbitrarily chosen infinitesimal and tm is an unoccupied orbital, 

* For more details, see the work of ROO~AAN [10]. 
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orthogonal to all the occupied orbitals. The orthonormality conditions for the 
varied orbital r are then given by 

<r Jr = <r 6>  + ~ <r ] r + ~ <r ] r + ~ <era [ r = ~ + ~ ,  (sa) 
(r [r <r162 + eo <r lr = 0 ,  (5b) 

which show that  the varied orbital is certainly orthogonal to all the other occupied 
orbitals, and remains normalized (to first order in w). 

When the orbital r is varied into r the resulting total electronic energy E' ,  
to second order in co and for real orbitals, is given by 

E '  = [E(l + 2co 2) + 2eo(~E + ~/~) + 2w 2 ~E] / ( l  + 2co ~) , (6a) 

with 
6E = (era ] H + 5 1t Ir  (6b) 

i 

~2E = <r ]H + Y b Ir - <r H + X ~1 1 r (6c) 
J 

where the summations extend over all the occupied orbitals. The composite 
operator (H + ~ I1) is the SCF operator, usually represented by F. The term ~E 

1 
represents the complex conjugate of 6E. 

In  SCF theory it is stated that  the necessary, though not sufficient condition 
for E to reach an absolute minimum is tha t  6E = 0 (and, therefore, ~ = 0) for 
any infinitesimal, non-vanishing variation of r which satisfies, of course, the 
orthonormality requirements. The condition <era I F I r = 0 leads to the pseudo- 
eigenvalue equation* 

(F I r = Y Ir 01,. ~7) 
J 

I t  can then be seen, as mentioned by TI~OULESS [11], tha t  the stability of Hartree- 
Fock functions, to first order, is satisfied whenever 0m~ = 0, for any r and era. 
That  is, the Lagrangian multipliers matrix 0 must be factored into two blocks, one 
for the occupied and the other for the unoccupied orbitals. These two submatrices 
can be diagonalized by  independent, unitary transformations of both sets of 
orbitals. 

The stability of the Hartree-Foek functions can now be investigated to second 
order in co. Taking into account that  (l + 2co ~) must necessarily be positive, the 
necessary condition reduces to J2E > 0, which leads, taking into account Eq. (6), to 

0 ~  - 0~ ~> O. (8) 

The condition represented by this equation simply states tha t  the orbital 
energy of any occupied orbital must be lower than, or equal to the orbital energy 
of any of the unoccupied orbitals**. This condition is usually satisfiedas the orbital 
energies of occupied orbitals are negative and the orbital energies of unoccupied 
orbitals are positive. 

* It must be mentioned that this result confirms the independent proof given by FgAGA 
and MALr~I [6]. 

** TI~OUL~SS [11] arrives at this result by considering the theoretical excitation energies, 
with neglect of some terms which do not affect the discussion. Similarly, a term (3K~ - J~)  
has been neglected in Eqs. (6e) and (8) of this paper. 
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I t  can be seen, though, tha t  it does not have to be necessarily so. Tha t  is, the 
orbital energies of unoccupied orbitals may  b e  negative, as long as they Mll be 
greater than  those of the occupied orbitals; as a mat ter  of fact there are cases 
where at least the lowest Omm has been found to be negative ; in this connection one 
can mention the results of I~A~SIL [9]. 

Because of the uncertainty in ascribing a meaning to the orbital energies 
corresponding to unoccupied orbitals, as pointed out by  ROOTHA~ [10], one might 
conclude tha t  the above condition does not offer any special importance, especially 
taking into account tha t  it seems to be automatically satisfied in every case. There 
is, though, one case where it can be of special interest, namely in connection with 
positive ions. 

General Considerations Regarding Positive Ions 

Theoretical calculations for positive ions should be carried out in the same way 
as those for neutral systems and negative ions. The only difference will arise from 
the fact tha t  the coordinates of the ionized electrons are removed from the tIamfl- 
tonian of the corresponding neutral system. 

This procedure is based on the following considerations. I f  gFiv and j/tiN-1 are 
the N- and (N-i)-eleetron tIamiltonians for the system under consideration, and 
~v  and ~v y-1 the corresponding eigenfunetions, then the condition 

( ~ N  I ~/jN--1 ~01) = I ~/flu ~/)1) EN-1 (9) 

must  be satisfied, ~0 x representing here an appropriate free-particle function*, as 
shown by  K~MBL~ [7]. In  particular, when ~0~-1 represents the lowest eigenstate 
of H N-1 and ~pl corresponds to a free-electron at  rest, E iv-1 is the energy of the 
gronndstate of the positive ion. Considering that  in such a case ~01 is simply a 
constant, the part  of the Hamfltonian dependent on the coordinates of this elec- 
tron becomes inoperative, and Eq. (9) transforms into 

(~N--1 I ,ipN--l> = ] ~/~r--1) E.~r-1 , (10) 

which can then be used to determine ~N-1. The difference (E N-1 - E 2v) defines 
then the first ionization potential for the system under consideration, tha t  is, the 
energy required to remove a single electron to infinity, with zero kinetic energy. 

The situation is different, though, when the problem is tackled within the 
independent-particle approximation, using the SCF variational techniques men- 
tioned above. 

Let  us consider a hypothetical system where one would follow the removal of 
the electron, from the original bound situation to the ionized state. From the 
beginning to the end of this transition, the kinetic and the interaction (nuclear 
attraction and electronic repulsion) energy with the rest of the system will decrease 
asymptotically, reaching a value zero at complete ionization. The remaining elec- 
tronic density distribution will adjust itself to the new situation at  each stage of 
the removal of the electron during this process. 

* Similar expressions can be written for higher orders of ionization. The discussion will be 
restricted here to the ease of singly charged positive ions, with the understanding that it can 
be extended to ions with any number of positive charges. 

9 Theoret. chim. Aeta (Berl.) u 6 
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One could assume that  the total state function for the complete system can be 
determined at each stage of this transition; in particular, one could determine it 
for the ionized state, under the condition that  the ionized electron must be at rest. 
The transformation of the total state function, when going from the completely 
bound to the ionized situation, should be monotonous. This procedure, if mathemat- 
ically feasible, would lead to the correct situation at the ionization limit and 
therefore the result thus obtained could be used to test the accuracy of the calcu- 
lations carried out by any other method. In particular, if the calculation is carried 
within the framework of the SCF method, it will provide a test for the existing 
functions of positive ions. The indications, as summarized below, seem to point 
out a difference. 

The procedure sketched above, and its implications, can be best understood 
through a concrete example. Let  us consider the case of Li, with an electronic 
configuration (ls)2(ns), where n can take successively higher values. The corresp- 
onding functions can be determined by the SCF procedure developed by FRA~A 
and BIRSS [4] on the basis of a generalized variational procedure. The orbital 
energy of the orbital ns will increase with n, tending asymptotically to zero (which 
will correspond to the ionization limit). 

Let  us now consider the calculation of the function for the groundstate of the 
positive ion, applying the standard SCF techniques. 1No reference is made to the 
ionized electron, which is neglected. I f  one uses the same basis set (in order to 
standardize the comparison) one will find a curious situation regarding the orbital 
energies. 

For each case of the series (ts)~(ns), there are two negative orbital energies. At 
high values of n the results will be such that  the interaction of the electron in the 
ns-orbital with the rest of the system (i.e., the nucleus and the other two electrons) 
will be very small, and so will be its kinetic energy. This fact is reflected in the 
small (negative) orbital energy. But suddenly, when the calculation for the 
groundstate of the ion is carried out, there will be, in general, only one negative 
orbital energy, corresponding to the is-orbital; the second lowest orbital energy 
will already be positive, and there is nothing in the standard formulation which 
will impose any restriction on the actual value it can take. There is clearly a dis- 
continuity and the function thus determined cannot be considered to constitute a 
proper representation of the groundstate of the positive ion. The functions of 
positive ions should be determined by a modified SCF procedure. 

Let  us consider the case of a singly-charged positive ion. The procedure consists 
then of solving the problem for the complete system with 2V electrons, but  imposing 
the subsidiary condition that  one of them will have zero kinetic energy, with no 
interaction with the rest of the system. Within the orbital approximation, the 
above conditions, when coupled together, lead to the composite condition that  
the orbital energy of the ionized electron must be identically zero, which, as shown 
in the preeeeding section, is perfectly compatible with a stable system. 

The corresponding mathematical formulation is now possible due to a recent 
development in SCF theory by  FI~GA and MALLI [6] who have shown that  there 
is no need of introducing the orthonormality conditions within the variationM 
treatment.  This fact makes it possible, as used by FI~AGA and BII~SS [5], to intro- 
duce any other constraint one may find convenient. 
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Mathematical Formulation 

One is then faced with the development of an SCF formalism in which the 
speeiM conditions concerning the ionized electrons are used as secondary con- 
straints. 

Two problems require special consideration: the symmetry  of the unoccupied 
orbitals and their occupancy. For the exact solution of the problem, as mentioned 
above, the orbitals "occupied" by  the ionized electrons must  be free-electron 
functions, without any symmetry  designation and singly occupied. Within the 
framework of the orbital approximation, the natural  solution seems to assume 
they posess the same symmetry  and occupancy as in the groundstate of the 
corresponding neutral system*. In  order to simplify the formulation to be pres- 
ented in this paper, with the understanding of its possible generalization, the case 
of a doubly-charged positive ion, with a closed-shell electronic configuration, will 
be considered here. The corresponding neutral system is also considered to have a 
closed-shell configuration. 

Before proceeding any further it is necessary to mention also the problem tha t  
may  arise in connection with the basis set to be used in practical calculations, as 
this consideration is closely related to the distinction between "bound"  and 
"ionized" orbitals. This problem has been discussed by  FRAOA [3] in connection 
with a similar problem, with the conclusion of using independent basis sets for the 
two sets of orbitals; difficulties in the practical execution would hinder the calcula- 
tions, and therefore it seems advisable to compromise on the extent to which the 
subsidiary constraints will be satisfied, as discussed below. 

The set of constraints to be considered are those corresponding to the energy 
interactions**. An accurate treatmen~ would require the formulation of the sepa- 
rate conditions 

- �89 v ~ 1 era) = 0 ,  ( l i a )  

2 ~ I r = 0, (lie) 
i 

- -  consists of the w h e r e -  �89 V ~ represents the kinetic energy o p e r a t o r , - ~ a  Z~r~ 

nuclear attraction terms (with the summation extending over all the nuclei 
present) of the Hamfltonian under consideration, and ~ I~ gives the potential  

field due to the bound electrons. 
A simpler formulation is obtained if one takes into account tha t  the virtual 

orbital energies roughly represent the interaction of excess electrons with the 
nuclei and the bound electrons. Therefore one can consider, instead of the condi- 
tions represented by  Eqs. ( l i )  the single condition 

* A modification must be introduced, e.g., when dealing with those cases where there is a 
partial ionization of an electronic shell; this is the problem that will be encountered when 
dealing, e.g., with C +, F+, etc. 

** In those cases where there are more than one ionized electron, it may also be necessary 
to consider their mutual interactions. In this case this condition is taken partially into account 
by the introduction of a composite constraint. 

9* 
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0ram = <tin [ F [ r  = 0 ,  (12) 

where F is the Hartree-Foek operator corresponding to the closed-shell orbitals. 
Following the method of F~AGA and Brass [5] one has really to consider the 

condition 

o,~., --- <r i ~ ] r162 I r �9 (13) 

When both the occupied and unoccupied orbitals are given an infinitesimal varia- 
tion, the above condition transforms into 

~o,,,., <r l r + o,~., {<~r I r + <era ] ~r 

+ Z {<~r 1 z., Ir + <r ~.,, I ~r (14) 
i 

where the summations extend over all the occupied orbitals, including tin. 
This condition can now be used as a constraint in the variational t rea tment  

of the energy. The necessary (though not sufficient) condition tha t  E will reach an 
absolute minimum is tha t  (~E = 0, subject to the above constraint. Multiplying 
this constraint by  the multiplier 2~m, and adding it to ~E, the new condition in 
order tha t  E will reach an absolute minimum is tha t  (for orthonormal orbitals) 

~ E t  = ~ E  - -  2 A m  ~ O m m  : O . (i5) 

Proceeding in the standard fashion one obtains the SCF eqnations 

(F - ~ f m  lr = ~ [r 0j~, (16a) 

(F - 2m(F -b Im) [ tin> = ~ ] tj> Ojm + [ tin> Omm(i -- ,~m) , (16b) 
] r  

with 
0j~ = <r ] ~ ] r (17) 

Let us now first consider the case when ~m = 0. The constraint becomes 
inoperative and the above equations reduce to those corresponding to the neutral 
system. On the other hand, for ~m = l, Eq. (16a) reduces to tha t  which is normally 
used for a positive ion, without any subsidiary constraint. Eq. (16b), on the other 
hand, leads to the condition 

(Z,~, I r = 0 ,  ( i8 )  

which is in agreement with the original constraints, but  tha t  will only be satisfied 
if tm vanishes identically. 

One should try,  therefore, a different constraint. The one chosen is O~mm = O, 
in which case one obtains 

ao~., [<r ] r + 2o~., {<aCre [ r + <r I ar <r I r 
-- 2 <r i_~ I r {<~r I y I Cm> + <r l y I~r + 
+ ~ r<acj [ I . ,  ]r + <r z,,, [ aCj>]}, (19) 

i 

which, for orthonormal orbitals, leads to the equations 

(F  -- ;~,. <4. ;  I V  ] era> _r,, ] r = y. [r 0j , .  (20a) 
i 

(p -~ . ,  <r I F I r (F+z.,)  J era>= Z [r oj.~+ 1 r o,,,,~(l-;t,,,o,~.,). (20b) 
j # m  
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For 2m = 0 the situation is identical to that  described above. But  for any other 
value of 2m (and the discussion is independent of the value of 2m, except for the 
extreme values, zero and infinity), the situation is now completely different. 

For the practical solution there is only need to use Eq. (20a), as it will be 
evident from the discussion below. ROOTHAA~ [10] showed that  a unitary trans- 
formation of the occupied orbitals leaves F invariant; choosing the transformation 
so that  all the off-diagonal Lagrangian multipliers 0ji (?" # /) become zero, one can 
write* 

(r--,~m (r IF]era> Im [ r  Ir 0~,, (21a) 

(F -- 2m <era I F  [ era} (F + Ira) ] r = ] era} Omm(l -- ,~m Omm). (215) 

Eq. (21a) can now be solved by the usual procedure of trial and error, but  the 
presence of the extra term in the operator introduces a difference. I t  is evident, 
taking into account the definition of 0j~, that  self-consistency will only be attained 
when that  extra term is precisely zero. I f  one takes for the calculation 2m # 0, say 
~m = t, and ff Cm does not vanish identically, then I m r  0. Therefore the only 
possibility which subsists is that  (era I F  ] r = 0, which is precisely the con- 
straint one wished to impose. In that  case, furthermore, Eq. (20b) va~fishes iden- 
tically. 

Discussion 
First of all one has to mention that,  at self-consistency, the formal definition 

of the Hartree-Fock operator has not changed as compared with the unrestricted 
formalism, except for the existence of the term Im within it. The subsistence of 
this term is due to the fact that  the composite constraint has been used instead of 
the original constraints, represented by Eq. (l i) .  The actual difference is, of 
course, due to the orbitals involved in it. 

This fact makes it impossible to predict how the orbital energies will change 
from the unrestricted to the restricted case. Given a fixed operator, not defined in 
terms of its own eigenfunctions, with one set of negative and another of positive 
eigenvalues, one would expect that  a constraint similar to the one discussed here 
would raise the negative and/or the positive eigenvalues, in order that  the trace of 
its matrix should remain unchanged. 

The first possibility appears to be rather attractive, especially when considered 
in conjunction with the ratios reported by F~AGA [2] and P~I~STL~Y and F~AGA 
[8]. A raising of the orbital energies of the occupied orbitals would certainly give a 
contribution in the right direction. 

In any case, the present formulation insures a continuity in the transition 
from the high-lying excited states of a neutral system to the groundstate of the 
corresponding positive ion. 

For those positive ions, where there is no conflict of partial ionization of a 
given shell, the set of orbital energies will be subdivided into three subsets of 
negative, zero, and positive values, corresponding to the occupied orbitals, 
orbitals housing the ionized electrons, and the unoccupied virtual orbitals, respec- 
tively. The meaning of the virtual orbital energies will still be effeeted by the same 
uncertainty as pointed out by  I~OOTHAAN [10] for unrestricted calculations. 

* The orbita]s should be written now as r to indicate that a transformation has been 
effected. The prime is dropped for simplicity. 
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For  those positive ions involving a part ial  ionization of  an electronic shell, the  
corresponding formulation,  to be carried out  within the context  of  the  general 
SCF theo ry  of  Brass  and  FI~AOA [1], should offer no mathemat ica l  difficulty. The 
only  question t h a t  remains to  be solved is t ha t  concerning the s y m m e t r y  and 
occupancy  of  the  ionized orbitals. I t  is believed t h a t  it will be more appropria te  to  
assume t h e y  belong to  the  same s y m m e t r y  designation as the orbitals in the  
groundsta te  of  the  neutral  sys tem from which the electrons have been ionized. 
Regarding the occupat ion numbers  i t  mus t  be t aken  into account  t h a t  single 
occupancy of  the  ionized orbitals finds itself in bet ter  agreement  with the t rue 
situation. 
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